
Drawing With Cocoa
Session 305

Drawing With Cocoa

John C. Randolph
Sr. Software Engineer

Apple Worldwide Developer Relations

What We’ll Cover
•How to draw using the Cocoa frameworks
•The Cocoa classes involved in 2D rendering
•Manipulating the coordinate space
•Images, paths, and text
•How the Quartz drawing model is reflected
in the Cocoa framework

The Quartz 2D Imaging Model
•Familiar from Postscript, PDF, SVG
•Paths are described in terms of instructions
for moving a pen in a two-dimensional space

•Paths consist of elements including moves,
lines, curves, and character glyphs

•Paths can be stroked with a given line width,
filled with a pattern, stroked with a dashed
line style, etc.

The Quartz 2D
Imaging Model (Cont.)

•Alpha-channel (transparency) support
• Can use pre-multiplied images

•Rich set of compositing operators
• 14 different compositing modes
• Uses both source and destination alpha
• Use CompositeLab to try them out

Some Good Advice
•In Cocoa development, concentrate on
the code that is unique to your application

•Do not reinvent the wheel
•Change the environment to make your
work easier

•As a friend of mine has said on many
occasions…

“Use the Kit, Luke!”
•First, see if there is an easy way to do what
you want to do

•Many common drawing tasks can be done
with high-level AppKit classes

•Paths, colors, text, images, and coordinate
transformations all have associated
AppKit classes

Where Do I Draw?
•Drawing destination

• Objects that implement -lockFocus
and -unlockFocus

•NSView
• A “Rectangle of Responsibility” in a window

•NSImage
• A high-level, resolution-independent
abstraction of images

NSView
•Provides a class for drawing, printing and
handling events

•An NSView has its own coordinate space
•NSViews are arranged in a hierarchy within
a window

What Is NSImage?
•A high-level abstraction for images
•A container for NSImageRep instances
•Both a thing to draw, and a place to draw
•Use NSImage to load .tiff, .jpeg, .gif, .pdf,
and other image file types

•Use NSImage as a destination for off-screen
drawing

Demo
Tinted Image

What I Did Wrong
in That Demo

•I was not very memory-efficient
•This could be improved by re-using a
“scratchpad” image, instead of creating and
discarding a new tinted image every time

NSColor
•Represents not only colors, but “meta” colors,
“catalog” colors, patterns, …

•To paint with an NSColor, send it a -set message
•To create an NSColor, use methods such as:

+colorWithPatternImage:, +whiteColor,

+colorWithCalibratedRed: green: blue: alpha:,

+controlHighlightColor

NSImage Pitfalls
•Check the size!

• The pixel dimensions are not the same
thing as the image size. Use the -size and
-setSize: methods

•Many apps get this wrong, so be alert
•Drawing scaled images
-composite… and -dissolve… methods behave
differently than -drawInRect… methods

Upcoming Features of NSImage
•Progressive display

• The delegate will be notified when the size
is known, when chunks of pixels arrive, and
when the entire image is finished loading

•Support for multi-frame images (animated GIFs)
• The frames become one long bitmap

The Quartz Coordinate System
•We stole it from René Descartes: the origin
is in the lower-left corner

•Coordinates are floating-point values
•Whole-number coordinates land between
screen pixels

(0,0)
(x,x)

(x,y)

The Quartz Coordinate
System (Cont.)

•If it is inconvenient, change it!
•An NSView’s coordinate system can be rotated,
scaled, and translated with methods like
-rotateByAngle:, -scaleUnitSquareToSize:,

-translateOriginToPoint:, and -setBoundsRotation:
•The NSAffineTransform class describes any
combination of scaling, translation, and rotation

The Frame Rectangle
•The rectangle describing a view’s location and
size in its superview’s coordinate space

• Get it with the -frame method
• Change it with -setFrame and
-setFrameRotation:

The Bounds Rectangle
•Describes the size of the view in its own
coordinate space

•Defines the location of the origin
•Change it with -setBoundsSize:, -setBounds:,

 -setBoundsRotation:, -setBoundsOrigin:

 -translateOriginToPoint:, -rotateByAngle:

 -scaleUnitSquareToSize:,

NSAffineTransform
•An object that describes operations on a
coordinate space

•It has many of the same methods as NSView for
changing a coordinate space: -rotateByDegrees:,
-translateXBy:yBy:, -scaleBy:

•Transform operations can be combined using
-appendTransform: and -prependTransform:

NSAffineTransform (Cont.)
•I have set up my NSAffineTransform,
how do I use it?

•Operations on objects and data: -transformPoint:
-transformSize:, -transformBezierPath:

•Apply it to the current drawing context:
-set, -concat

Demo
Transformed View

What I Did Wrong
in That Demo

•Drawing too much
• I could have only drawn the parts that
changed, using -setNeedsDisplayInRect:

Demo
Transformed Image

What Did I Do
Wrong This Time?

•Nothing! It was perfect

NSBezierPath
•This is how you should do most
vector-based drawing

•Encapsulates the Quartz 2D drawing model
• Path construction methods

-moveTo:, -lineTo:, -curveTo:
-appendBezierPathWith...

• Path attributes
-lineJoin, -lineWidth, -miterLimit,- flatness

• Drawing the Path
-fill, -stroke

NSBezierPath (Cont.)
•Convenience methods:

+strokeLineFromPoint:toPoint:

+fillRect:, +bezierPathWithOvalInRect:

•Add your own:
If there is a shape you use a lot, add a
method to NSBezierPath to draw it

Demo
StringArt View

What I Did Wrong This Time…
•Inefficient drawing!
•Clearing/redrawing the entire bounds

• I should just clear the rectangle passed
to me in -drawRect:

• I did not re-use the bezierpath
•Made lame excuses because it is just a demo

NSBezierPath Considerations
•The rasterizer charges by the intersection
•Take care with pixel placement when
stroking a path

•Check whether you are drawing for the
screen or the printer

The Graphics State
•Looking for gsave and grestore?
•You just found them!
•The NSGraphicsState class keeps a stack
of graphics states, just like Postscript

•NSGraphicsState methods: + saveGraphicsState,
+ restoreGraphicsState, - setShouldAntiAlias:

+ currentContextDrawingToScreen, etc.

Kit Functions and Macros
•Rectangle drawing functions

• NSRectFill(), NSRectFillList(),
NSRectFillListWithColors(), NSRectFillUsingOperation(),
NSRectFillListWithColorsUsingOperation()

•Geometry Conveniences
• NSDivideRect(), NSContainsRect(), NSEqualRects(),
NSMakeRect(), NSMouseInRect(), NSHeight(),

NSWidth(), NSMinX, NSMaxY(), and so on…
•If you think it should be there, look for it;
It probably exists

Drawing Strings
•The AppKit adds drawing methods to NSString:

 -drawAtPoint:withAttributes:,
-drawInRect:withAttributes:,
-sizeWithAttributes:

•…And to NSAttributedString:
 -drawAtPoint:, -drawInRect:, -size

Drawing With NSCell
•Cells are objects that draw themselves in Views
•Use a Cell when the overhead of an NSView
is not necessary

•The AppKit includes NSCell classes for drawing
images and text

Drawing With NSCell (Cont.)
•Use a Cell for drawing lines or blocks
of editable text

•Cells can be re-used, as in NSBrowser
and NSTableView

•NSControl subclasses typically have a
cell do all their drawing

Drawing With NSCell (Cont.)
•A cell is often a good starting point for your
custom drawing

•Cells do their drawing in -drawInRect:inView:
•In a cell subclass, you can use the inherited
drawing behavior

Demo
Cells and Views

Simple things simple,
Complex things possible

Cocoa:

Conclusion
•We saw how to draw using the classes in
the Cocoa framework

•And how to do some sophisticated things
with not much code at all

Documentation > Cocoa
developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

Cocoa Documentation
•Object-Oriented Programming and the Objective-C Language
• Programming Topics

• Application Architecture
• Memory Management
• Foundation Framework
• Multithreading
• Loading Resources
• Notifications

and many more!

For More Information
•O’Reilly “Learning Cocoa” and “Building Cocoa
Applications: A Step-by-Step Guide”

•Cocoa Developer Documentation
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

•Apple Customer Training
 http://train.apple.com/

Roadmap
Room A1

Mon., 5:00pm
Room A1

Mon., 5:00pm

300 Introduction to Cocoa:
What is Cocoa?

Civic
Tues., 9:00am

Civic
Tues., 9:00am

301 Cocoa: What’s New?

Room A2
Thurs., 10:30am

Room A2
Thurs., 10:30am

303 Cocoa Scripting:
Scripting overview and recent changes

Room A2
Thurs., 5:00pm

Room A2
Thurs., 5:00pm

304 Cocoa Controls and
Cocoa Accessibility
Overview of controls; new Accessibility APIs

Roadmap
Hall 2

Fri., 10:30am
Hall 2

Fri., 10:30am

305 Cocoa Drawing:
Drawing using Cocoa APIs

Room J
Fri., 2:00pm
Room J

Fri., 2:00pm

306 Cocoa Text:
In-depth overview of the text system

Room A1
Fri., 5:00pm
Room A1

Fri., 5:00pm

FF016 Cocoa:
Comments and suggestions for Cocoa

Who to Contact

Cocoa Feedback
cocoa-feedback@group.apple.com

Cocoa Development Mailing List

Subscribe at
www.lists.apple.com/mailman/listinfo/cocoa-dev

Heather Hickman
Cocoa Technology Manager
Apple Worldwide Developer Relations
hhickman@@apple.com

http://developer.apple.com/wwdc2002/urls.html

Q&A

Cocoa Frameworks Teams

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

